Exploiting Context for Rumour Detection in Social Media

نویسندگان

  • Arkaitz Zubiaga
  • Maria Liakata
  • Rob Procter
چکیده

Tools that are able to detect unverified information posted on social media during a news event can help to avoid the spread of rumours that turn out to be false. In this paper we compare a novel approach using Conditional Random Fields that learns from the sequential dynamics of social media posts with the current state-of-the-art rumour detection system, as well as other baselines. In contrast to existing work, our classifier does not need to observe tweets querying the stance of a post to deem it a rumour but, instead, exploits context learned during the event. Our classifier has improved precision and recall over the state-of-the-art classifier that relies on querying tweets, as well as outperforming our best baseline. Moreover, the results provide evidence for the generalisability of our classifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Reporting Dynamics during Breaking News for Rumour Detection in Social Media

Breaking news leads to situations of fast-paced reporting in social media, producing all kinds of updates related to news stories, albeit with the caveat that some of those early updates tend to be rumours, i.e., information with an unverified status at the time of posting. Flagging information that is unverified can be helpful to avoid the spread of information that may turn out to be false. D...

متن کامل

Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure of Social Media Conversations

Rumour stance classification, the task that determines if each tweet in a collection discussing a rumour is supporting, denying, questioning or simply commenting on the rumour, has been attracting substantial interest. Here we introduce a novel approach that makes use of the sequence of transitions observed in tree-structured conversation threads in Twitter. The conversation threads are formed ...

متن کامل

FootballWhisper: Transfer Rumour Detection

Social media has been shown to have potential to predict various real world events, such as movements in the stock market and the outcomes of political elections. In this paper we present the Football Whispers (FW), a website dedicated to fans discussing transfer rumours. The unique selling point of the site is that it provides a crowdsourced assessment of those rumours, measuring the relative ...

متن کامل

Using Gaussian Processes for Rumour Stance Classification in Social Media

Social media tend to be rife with rumours while new reports are released piecemeal during breaking news. Interestingly, one can mine multiple reactions expressed by social media users in those situations, exploring their stance towards rumours, ultimately enabling the flagging of highly disputed rumours as being potentially false. In this work, we set out to develop an automated, supervised cla...

متن کامل

Crowdsourcing the Annotation of Rumourous Conversations in Social Media

Social media are frequently rife with rumours, and the study of rumour conversational aspects can provide valuable knowledge about how rumours evolve over time and are discussed by others who support or deny them. In this work, we present a new annotation scheme for capturing rumour-bearing conversational threads, as well as the crowdsourcing methodology used to create high quality, human annot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017